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Abstract

Due to the notorious modality imbalance phe-
nomenon, multimodal learning (MML) struggles to
achieve satisfactory performance. Recently, multi-
modal learning with alternating unimodal adapta-
tion (MLA) has been proven effective in mitigat-
ing the interference between modalities by captur-
ing interaction through orthogonal projection, thus
relieving modality imbalance phenomenon to some
extent. However, the projection strategy orthogo-
nal to the original space can lead to poor plastic-
ity as the alternating learning proceeds, thus affect-
ing model performance. To address this issue, in
this paper, we propose a novel multimodal learn-
ing method called interactive MML via flat gradient
modification (IGM) by employing a flat gradient
modification strategy to enhance interactive MML.
Specifically, we first employ a flat projection-based
gradient modification strategy that is independent
to the original space, aiming to avoid the poor plas-
ticity issue. Then we introduce the sharpness-aware
minimization (SAM)-based optimization strategy
to fully exploit the flatness of the learning objective
and further enhance interaction during learning. To
this end, the plasticity problem can be avoided
and the overall performance is improved. Exten-
sive experiments on widely used datasets demon-
strate that IGM outperforms various state-of-the-
art (SOTA) baselines, achieving superior perfor-
mance. The source code is available at https://
github.com/njustkmg/IJCAI25-IGM.

1 Introduction
Multimodal learning (MML) [Zhao et al., 2016; Perez et al.,
2018; Yang et al., 2019; Li et al., 2020; Du et al., 2022; Liang
et al., 2022] has attracted much attention and made promis-
ing progress across a wide range of real applications such
as speech recognition [Ngiam et al., 2011], sentiment anal-
ysis [Zhu et al., 2024], image caption [Chang et al., 2015],
multimedia retrieval [Wang et al., 2016; Zhu et al., 2023;
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Figure 1: Illustration of motivation. Left: The architecture com-
parison for MML, MLA and IGM. Right: The histgram of gradient
change cosine similarity for MLA, IGM w/o SAM, and IGM.

Yang et al., 2024a], recommendation system [Xiao et al.,
2022], and so on.

Compared with the single modality method, multimodal
learning methods are expected to achieve better performance
through fusing rich information from multiple modalities.
However, as the information among the different modali-
ties is imbalanced, multimodal learning, which usually tries
to optimize a uniform objective, falls into the trap of fo-
cusing on learning the dominant modality while ignoring
the non-dominant modality [Wang et al., 2020; Peng et al.,
2022]. Hence, the overall performance of multimodal learn-
ing in practical applications is greatly restricted because of
the modality imbalance problem.

In recent years, many works [Wang et al., 2020; Zong et
al., 2024; Yang et al., 2025; Yang et al., 2024b] have ex-
plored the modality imbalance problem and various algo-
rithms have been proposed to balance the learning proce-
dure for all modalities. The paradigm of these methods is
illustrated in the left Sub-Figure 1 (a), where late fusion is
used as an example for general MML. Among these meth-
ods, most of them [Wang et al., 2020; Peng et al., 2022;
Fan et al., 2023; Li et al., 2023] focus on designing a learning
adjustment strategy to rebalance the learning speeds for dif-
ferent modalities. Other representative methods [Wu et al.,
2022a; Du et al., 2023] introduce extra networks as the aux-
iliary module to overcome the modality imbalance problem.
Unfortunately, these methods usually optimize the multiple
modality-specific models simultaneously, thus failing to fully
explore the interaction between all modalities and affecting
the model performance. Recent work MLA [Zhang et al.,
2024] designs an alternating unimodal adaption algorithm to
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capture the cross-modality information. As shown in the left
Sub-Figure 1 (b), MLA employs the orthogonal projection
to capture the cross-modal interaction, thus mitigating the
interference between different modalities and further reliev-
ing the modality imbalance phenomenon. However, [Zhao et
al., 2023] finds that the orthogonal projection strategy used
to transfer gradient information to promote learning leads to
poor plasticity problem. For MLA, as the alternating learn-
ing proceeds, the influence of orthogonal projection is con-
tinuously imposed on the model, leading to feasible gradient
direction becomes narrow, i.e., poor plasticity. This issue re-
sults in a suboptimal solution.

To address this issue, we propose a novel flat projection-
based gradient modification (GM) strategy to facilitate the
capturing of cross-modal interactions. Essentially, flatness
and sharpness [Chaudhari et al., 2017; Keskar et al., 2017]
characterize the nature of the loss landscape. The flatter the
direction of gradient transfer, the more the original modal in-
formation can be preserved due to the stability of the flat di-
rection. More importantly, because the selection of the flat
direction is based on the loss of the current modality and
independent of the gradient direction of the affected modal-
ity, this strategy avoids poor plasticity issue. In summary,
the flat projection-based strategy can mitigating the interfer-
ence between different modalities and address the poor plas-
ticity problem simultaneously. As plasticity [Sun et al., 2022]
refers to a model’s ability to adapt to new modality after
learning previous modality, we compare the gradient change
histgram by calculating the cosine similarity between the gra-
dients of the old and new modalities in the right Sub-Figure 1.
The results demonstrate that the flat projection-based gradient
modification method (IGM w/o SAM) achieves higher simi-
larity compared to MLA, suggesting that this strategy effec-
tively mitigates the poor plasticity issue. In addition, the is-
sue of poor plasticity was further confirmed through accu-
racy comparisons in Table 1. Furthermore, because well-
known highly non-convex [Foret et al., 2021; Deng et al.,
2021] of the loss of deep neural networks, the loss landscape
is usually sharp. To further explore and employ the flatness
of the loss landscape in multimodal learning, we introduce
the SAM-based [Foret et al., 2021] optimization strategy to
smooth the learning objective. By introducing this strategy,
we strengthen the flatness of the loss landscape and thus en-
hance the effectiveness of interactive learning. These two
novel strategies are illustrated in the left Sub-Figure 1 (c).

Our proposed novel approach is named as interactive MML
via flat gradient modification (IGM). Our contributions can be
summarized as follows:

• We propose a novel flat projection-based gradient mod-
ification strategy to capture the cross-modal interaction.
This strategy can avoid the poor plasticity caused by or-
thogonal projection.

• To further employ the flatness of the loss landscape, we
introduce a SAM based optimization strategy to smooth
the learning objective.

• Extensive experiments on widely used datasets show
that our IGM can outperform state-of-the-art baselines
to achieve the best performance.

2 Related Works
2.1 Imbalance Multimodal Learning
Because of modality imbalance, MML methods sometimes
exhibit the counterintuitive phenomenon of performing worse
than unimodal models [Peng et al., 2022]. Due to the hetero-
geneity, different models converge at different rates during
training, leading to suboptimal performance in MML.

Some researchers have proposed a serious of ap-
proaches [Wang et al., 2020; Peng et al., 2022; Fan et al.,
2023; Li et al., 2023; Wei and Hu, 2024] to address this prob-
lem by rebalancing the modal learning. To be more specific,
these approaches aim to slow down the learning of dominant
modality by adjusting the gradients to ensure that the learn-
ing of both modalities is as balanced as possible. Other at-
tempts, including uni-modal teacher (UMT) [Du et al., 2023]
and greedy MML [Wu et al., 2022b], employ an extra net-
work module to assist MML. Both methods adopt a learning
paradigm that updates the parameters of all modalities simul-
taneously. To enhance the interaction among all modalities,
MLA [Zhang et al., 2024] employs an alternating learning
paradigm for interactive MML, which leads to performance
improvement.

2.2 Sharpness Aware Minimization
Many efforts have been made to overcome the highly non-
convex problem of DNN models by using the properties of the
loss landscape. Sharpness aware minimization (SAM) [Foret
et al., 2021] proposes an effective algorithm to improve the
generalization ability by using the relationship between loss
sharpness and generalization. In particular, instead of learn-
ing the original objective, SAM aims to minimize the loss
value and loss sharpness simultaneously. The learned param-
eters by SAM usually lie in the neighborhoods that have uni-
formly loss value of the original objective, leading to converg-
ing to flat minima. Therefore, the loss landscape will be more
flat and the objective will converge to a flat minimum. SAM
has been applied in many application scenarios successfully.
For example, FlatMatch [Huang et al., 2023] extends SAM
to semi-supervised learning by penalizing the cross-sharpness
between the worst-case model and the original model.

3 Methodology
In this paper, we focus on late fusion MML approach which
usually adopt a two stream architecture following the setting
of [Ye et al., 2018; Liu et al., 2024]. We present our proposed
multimodal representation learning method IGM in detail.
The whole IGM approach is shown in Figure 2. IGM contains
two important components, i.e., flat projection-based gradient
modification and SAM-based optimization.

3.1 Preliminary
Assume that we have n data entities for training, each of
which contains m modalities. Without loss of generality,
we use D = {X (j)}mj=1 to denote the training set, where

X (j) = {x(j)
i }ni=1 denotes the data points of j-th modality

and x
(j)
i denotes the i-th data point. In addition, we are also

given a category label yi ∈ {0, 1}c for each data point, where
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Figure 2: The architecture of our proposed IGM. Our method contains two key components, i.e., flat projection-based gradient modifica-
tion (shown in the right part of the panel) and SAM-based optimization (shown in the upper left corner of the panel).

c denotes the number of category labels. In general, the goal
of multimodal learning is to use the training set D to learn a
model to predict category labels for unseen data.

For deep multimodal learning methods [Wang et al., 2020;
Peng et al., 2022; Li et al., 2023], different deep neural net-
works are used as the model to predict categories for each
modality. For the sake of simplicity, we use φ(j)(·) to de-
note the encoder which is used to extract the feature of j-th
modality. And the feature z

(j)
i of i-th data point can be cal-

culated by z
(j)
i = φ(j)(x

(j)
i ; Φ(j)), where Φ(j) denotes the

parameters. Then the prediction p
(j)
i can be presented as:

p
(j)
i = ϕ(j)(z

(j)
i ; Θ(j)) = softmax([W (j)]⊤z

(j)
i ),

where ϕ(j)(·) indicates the j-th classifier, Θ(j) denotes the
parameter of j-th classifier, and W (j) denotes the weight of
fully-connected layer. According to p

(j)
i , the training proce-

dure is performed by minimizing the following loss function:

L(θ(j);X (j)) = − 1

n

∑n

i=1
y⊤
i log p

(j)
i , (1)

where θ(j) ≜ {Φ(j),Θ(j)}. After training, the final prediction
of i-th data point can be generated by the following equation:

pi = f(p
(1)
i , · · · ,p(m)

i ).

Here, f(·) denotes the late fusion strategy. In practice, there
exist various late fusion strategies like averaging or weight-
ing. However, how to design fusion strategies is not the focus
of our paper and it will be left for future study.

Unlike to most of late fusion approaches, MLA tries to es-
tablish the connections between the learning processes in dif-
ferent modalities. Specifically, MLA designs an alternating
learning paradigm to capture the interaction through orthog-
onal projection. However, MLA adopts an orthogonal pro-
jection strategy to perform interactive learning and usually
suffers from poor plasticity problem [Wang et al., 2021] due
to the usage of orthogonal projection strategy.

3.2 Flat Projection-based Gradient Modification
Flatness and sharpness [Chaudhari et al., 2017; Keskar et al.,
2017] are two pivotal properties of loss. The change of loss
value is relatively smooth in the flat directions. Hence, when
we transfer the gradient information along with the flat direc-
tions, the information we want to transfer will be less affected
by the change of loss.

Then, inspired by Adam-NSCL [Wang et al., 2021], we de-
sign a singular value decomposition (SVD) based approach
to find the flat directions. We use the training procedure of
k-th and l-th modality to illustrate the flat projection-based
gradient modification strategy. We utilize the full-connected
layer before the classification layer to illustrate the flat direc-
tion modification strategy. Given t-th batch of nB samples
X (k)

t = {x(k)
1 , · · · ,x(k)

nB}, the features of the input batch can
be calculated by:

Z
(k)
t = φ(k)(X (k)

t ),

where Z
(k)
t ∈ RnB×d, d is the dimensionality of feature.

Then we compute the mean of features and the covariance of
the batch by:

z̄
(k)
t = mean(Z

(k)
t ) ∈ Rd,

Y
(k)
t = z̄

(k)
t [z̄

(k)
t ]⊤ ∈ Rd×d.

Then, the cumulative variance can be calculated by:{
Ȳ

(k)
t = Y

(k)
t , if t = 1,

Ȳ
(k)
t = Ȳ

(k)
t−1 + Y

(k)
t , otherwise.

(2)

By applying SVD to Ȳ
(k)
nB

, we have:

U (k)Λ(k)[V (k)]⊤ ≜ svd(Ȳ
(k)
nB

),

where Λ(k) = diag(λ
(k)
1 , · · · , λ(k)

d ) denotes the singular val-
ues matrix, U (k) and V (k) = [v

(k)
1 , · · · ,v(k)

d ] denote the left
and right singular vectors, respectively.



For now, let us consider the geometry properties of the di-
rection indicated by singular vector v(k)

i . If we perturb Z
(k)
t

along with the singular direction v
(k)
i with the perturbation

magnitude γv
(k)
i , the change of the output for the last full-

connected layer can be computed by:

∥Z(k)
t γv

(k)
i ∥ = ∥U (k)Λ(k)[V (k)]⊤γv

(k)
i ∥ = γλ

(k)
i . (3)

From Equation (3), the flatness of the direction indicated
by singular vector v

(k)
i is determined by the singular value

λ
(k)
i . In other words, the larger the singular value, the smaller

the update modification should be in the direction of the sin-
gular vector. Thus, we design the following gradient modifi-
cation matrix T (k):

T (k) = V (k)Σ(k)[V (k)]⊤. (4)

Here, Σ(k) = exp
(
− τ

λ
(k)
max−λ

(k)
min

(Λ(k) − λ
(k)
minI)

)
, τ > 0 is

a scaling factor and I is the identity matrix. Hence, when
we update the parameter of l-th modality for the last full-
connected layer, the SGD-based update rule is modified as:

W
(l)
t+1 = W

(l)
t − η(l)T (k)∇W (l)L(θ(l)), (5)

where η(l) denotes the corresponding learning rate. From
Equation (5), we can find that the information of k-th modal-
ity is injected into l-th modality. Equipped with the flat
projection-based gradient modification strategy, we can trans-
fer the original modality information more effectively with
less impact. From Equation (4), the calculation of gradi-
ent modification matrix is independent of the l-th modality.
Hence, our strategy can avoid poor plasticity problem.

3.3 SAM-based Optimization
Up to now, we design a novel gradient projection strategy to
address the poor plasticity issue. Unfortunately, the loss of
DNN is usually highly non-convex, i.e., the loss landscape
is usually sharp. To better find a flat direction, we introduce
the SAM [Foret et al., 2021]-based optimization strategy to
smooth the learning objective.

Because the SAM-based optimization strategy will be ap-
plied to all modalities, we omit the superscript “(k)” and
use θ directly to illustrate. For multimodal learning with
loss L(θ), we define the perturbation of parameter θ as
ϵ. Based on ϵ, the SAM objective [Foret et al., 2021;
Huang et al., 2023] can be defined as:

LSAM(θ) ≜ maxϵ:∥ϵ∥p≤ρ L(θ + ϵ),

≜ maxϵ:∥ϵ∥p≤ρ
1

n

∑n

i=1
ℓ(θ + ϵ;pi,yi),

where ρ restricts the perturbation magnitude of θ within ℓp-
ball. Instead of minimizing the objective function L(θ) in
Equation (1), we perturb the parameter θ with ϵ ∈ Ψ and
optimize the following SAM objective:

minθ LSAM(θ). (6)

Here, Ψ denotes the parameter space. Through optimizing
objective LSAM(θ), we can smooth the learning objective,
thus improving the flatness of the loss landscape.

Algorithm 1 Algorithm for IGM
Input: Training set D and labels Y ;
Output: The learned parameters {θ(j)}(m)

j=1;
INIT: Initialize gradient modification matrix. Initialize
{T (k)}(m)

j=1: ∀k ∈ {1, · · · ,m}, T (k) = I;
1: for i = 1 → Out Iters do
2: for j = 1 → m do ▷ Main iteration.
3: for t = 1 → Inner Iters do
4: Randomly construct a mini-batch X (j)

t .
5: Calculate loss L(θ(j)) for data in X (j)

t .
6: Calculate ϵ∗(θ(j)) according to Eq. (7).
7: Calculate ∇θ(j)LSAM according to Eq. (8).
8: Calculate modality index:
9: k = mod(j +m− 2,m) + 1.

10: Update θ(j): θ(j)t+1 = θ
(j)
t − η(j)T (k)∇θ(j)LSAM.

11: for j = 1 → nB do ▷ Update {Ȳ (k)
nB

}.
12: Update cumulative variance according to Eq. (2).
13: Update T (j) according to Eq. (4). ▷ Update T (j).

In order to estimate the optimal perturbation ϵ∗, we can
construct the following inner maximization problem [Foret et
al., 2021]:

ϵ∗(θ) = argmax∥ϵ∥p≤ρ L(θ + ϵ)

≈ argmax∥ϵ∥p≤ρ ϵ⊤∇θL(θ)
p=2
≈ ρ

∇θL(θ)

∥∇θL(θ)∥2
. (7)

By substituting Equation (7) into SAM objective in Equa-
tion (6) and differentiating, we can get:

∇θL
SAM = ∇θ

[
L
(
θ + ϵ∗(θ)

)
− L(θ)

]
+ L(θ)

≈ ∇θL (θ + ϵ∗(θ))

=
d (θ + ϵ∗(θ))

dθ
∇θL(θ)|θ+ϵ∗(θ)

= ∇θL(θ)|θ+ϵ∗(θ) + o(θ), (8)

where o(θ) denotes the second-order term with respect to θ
and this term can be discarded to accelerate the computation.
Intuitively, optimizing SAM objective can yield flatter min-
ima which can improve the flatness of loss landscape com-
pared with minimizing L(θ).

Since the gradient modification strategy is iterative, the
SAM loss also needs to be applied to learning all modalities.
Hence, the update rule in Equation (5) is modified as:

W
(l)
t+1 = W

(l)
t − η(l)T (k)∇W (l)LSAM(θ(l)). (9)

The learning algorithm of IGM is summarized in Algo-
rithm 1. In Algorithm 1, mod(·) denotes the modulo function
and mod(a, b) returns the remainder after division of a by b.

Note that the aforementioned discussion is based on the as-
sumption that the architecture of models of different modali-
ties is the same. In scenarios where network architectures of
different modalities are heterogeneous, the gradient modifi-
cation strategy can be applied to deep layers of networks with
the same architecture.



4 Experiments
4.1 Datasets
We adopt five datasets, i.e., CREMA-D [Cao et al., 2014],
Kinetics-Sounds [Arandjelovic and Zisserman, 2017], Twit-
ter2015 [Yu and Jiang, 2019], Sarcasm [Cai et al., 2019],
and NVGesture [Molchanov et al., 2016], for evaluation.
CREMA-D consists of 7,442 clips from 91 actors. The clips
are divided into 6,698 samples for training and 744 samples
for testing. Kinetics-Sounds comprises 31 human action cate-
gory labels. It is divided into a training set with 15K samples,
a validation set with 1.9K samples, and a testing set with 1.9K
samples. Twitter2015 contains 5,338 image-text pairs with
3,179 for training, 1,122 for validation, and 1,037 for test-
ing. Sarcasm consists of 24,635 image-text pairs. We split
this dataset as 19,816 for training, 2,410 for validation, and
2,409 for testing following the setting of the original paper.
NVGesture dataset contains 1,532 dynamic hand gestures.
This dataset is divided into 1,050 for training and 482 for test-
ing. We use RGB, Depth, and optical flow (OF) modalities to
carry out experiments for NVGesture dataset.

4.2 Experimental Settings
Baselines: We select various methods for comparison, in-
cluding OGR-GB [Wang et al., 2020], OGM [Peng et al.,
2022], DOMFN [Yang et al., 2022], MSES [Fujimori et
al., 2019], PMR [Fan et al., 2023], AGM [Li et al., 2023],
MSLR [Yao and Mihalcea, 2022], ReconBoost [Hua et al.,
2024], sample-level modality valuation (SMV) [Wei et al.,
2024], MMPareto [Wei and Hu, 2024], and MLA [Zhang
et al., 2024]. Among these methods, OGR-GB, OGM,
DOMFN, SMV, and MMPareto are early fusion methods.
The remaining are late fusion methods.
Evaluation Protocols: We use accuracy (Acc.) and mean
average precision (MAP) for CREMA-D and Kinetics-
Sounds datasets following the setting of OGM [Yang et al.,
2022]. For Twitter2015, Sarcasm, and NVGesture datasets,
we use accuracy and macro-F1 as evaluation metrics follow-
ing the setting of the paper [Cai et al., 2019]. The accuracy
is used to measure the proportion of concordance between
predictions and ground-truth labels. The MAP can be calcu-
lated by taking the mean of average precision for each cate-
gory. And the macro-F1 can be calculated by averaging the
F1 scores for each category.
Implementation Details: Following the setting of OGM, we
use ResNet18 [He et al., 2016] as the backbone to encode au-
dio and video for CREMA-D and Kinetics-Sounds datasets .
For Twitter2015 and Sarcasm datasets, we adopt BERT [De-
vlin et al., 2019] as the text encoder and ResNet50 [He et
al., 2016] as the image encoder following the setting of the
paper [Yu and Jiang, 2019]. For NVGesture dataset, we fol-
low the data preparation steps outlined in the paper [Wu et
al., 2022a] and employ the I3D [Carreira and Zisserman,
2017] as unimodal branches. For a fair comparison, all
baselines adopt the same backbone for the experiment. For
IGM, we explore a three-layer network, which can be de-
noted as “FC(Dim × 256) → ReLU → FC(256 × 64) →
FC(64 × c)”, as classification head after features are ex-
tracted. Here, “FC” and “ReLU” denote the full-connected

layer and ReLU [He et al., 2016] layer, respectively, and
“Dim” denotes the dimension of features extracted by the
encoder. For audio and video modalities, the dimension of
the feature is 512. For image-text modalities and NVGes-
ture dataset, the dimension is 1024. The gradient modifica-
tion strategy is applied for the classification head for IGM.
Furthermore, for IGM, we use SGD as the optimizer for the
audio-video and NVGesture datasets, with a momentum of
0.9 and weight decay of 1 × 10−4. The initial learning rate
is set to be 1 × 10−2, and is divided by 10 when the loss
is saturated. For image-text datasets [Yu and Jiang, 2019;
Cai et al., 2019], we use Adam as the optimizer, with an initial
learning rate of 1×10−5. By using the cross-validation strat-
egy with a validation set, the hyper-parameter scaling factor
τ is set to be 0.4 for all datasets. The hyper-parameter ρ is
set to be 1 × 10−15 and 1 × 10−10 for image/text modality
and audio modality, respectively. During calculating cumula-
tive variance, we set batch size as 12 for all datasets except
NVGesture. For NVGesture dataset, the batch size is set to
6 due to memory limitation. For all hyper-parameters, we
utilize a cross-validation strategy on a validation set to de-
termine their value. The experiments are performed with an
NVIDIA RTX 3090 GPU.

4.3 Comparison with SOTA MML baselines
We conduct comprehensive experiments to verify the supe-
riority of IGM. We compare IGM with SOTA MML base-
lines on all datasets. We report the results in Table 1, where
the best and the second-best results are shown in bold and
underlining, respectively. We use Unimodal-1/2/3 to denote
the results based on unimodal. Unimodal-1/2 respectively
denote the video/audio for CREMA-D and Kinetics-Sounds,
and text/image for Twitter2015 and Sarcasm. For NVGes-
ture dataset, Unimodal-1/2/3 denotes the RGB/OF/Depth
modality, respectively. Furthermore, the results of “MLA*”
are referred from the original paper of MLA. And the results
of “MLA” are reproduced by us based on the authors’ source
code. For IGM, we adopt the same weighting strategy as the
MLA method for fair comparison. We use “IGM w/o SAM” to
denote IGM without SAM loss.

From Table 1, we can observe that: (1). Compared with
various SOTA baselines, IGM can achieve the best perfor-
mance in almost all cases by substantially large margins, in-
cluding the scenarios involving two and three modalities. (2).
IGM w/o SAM can outperform MLA in all cases, demonstrating
that our proposed flat projection-based GM strategy achieves
better performance while effectively avoiding poor plasticity.
(3). IGM outperforms IGM w/o SAM in call cases, demonstrat-
ing that SAM-based optimization can further boost model
performance. The underlying reasons will be discussed in ab-
lation study section. (4). Furthermore, we find that the results
of some baselines are worse than that of unimodal method,
which is indicated by symbol † in Table 1.

4.4 Ablation Study
Effectiveness of GM and SAM Loss: To fully explore
the effectiveness of IGM, we study the influence of differ-
ent components, including the gradient modification strat-
egy and SAM loss. The accuracy on CREMA-D dataset are



Method CREMA-D Kinetics-Sounds Twitter2015 Sarcasm NVGesture
Acc. MAP Acc. MAP Acc. Mac-F1 Acc. Mac-F1 Acc. Mac-F1

Unimodal-1 .6317 .6861 .5312 .5669 .7367 .6849 .8136 .8065 .7822 .7833
Unimodal-2 .4583 .5879 .5462 .5837 .5863 .4333 .7181 .7073 .7863 .7865
Unimodal-3 - - - - - - - - .8154 .8183
OGR-GB .6465 .6854† .6710 .7139 .7435 .6869 .8335 .8271 .8299 .8305
OGM .6694 .7173 .6606 .7144 .7492 .6874 .8323 .8266 - -
DOMFN .6734 .7372 .6625 .7244 .7445 .6857 .8356 .8262 - -
MSES .6156† .6683† .6471 .7063 .7184† .6655† .8418 .8360 .8112† .8147†
PMR .6659 .7030 .6656 .7193 .7425 .6860 .8360 .8249 - -
AGM .6707 .7358 .6602 .7252 .7483 .6911 .8402 .8344 .8278 .8282
MSLR .6546 .7138 .6591 .7196 .7252† .6439† .8423 .8369 .8286 .8292
ReconBoost .7484 .8124 .7085 .7424 .7442 .6834 .8437 .8317 .8413 .8632
SMV .7872 .8417 .6900 .7426 .7428 .6817 .8418 .8368 .8352 .8341
MMPareto .7487 .8535 .7000 .7850 .7358 .6729 .8348 .8284 .8382 .8424
MLA* .7970 - .7135 - - - - - - -
MLA .7943 .8572 .7004 .7413 .7352† .6713† .8426 .8348 .8373 .8387
IGM w/o SAM .8026 .8830 .7159 .7623 .7395 .6912 .8455 .8390 .8487 .8634
IGM .8105 .8948 .7403 .7855 .7489 .6917 .8468 .8392 .8693 .8703

Table 1: Comparison with state-of-the-art multimodal learning baselines. The best and second-best performances are highlighted in bold and
underlined, respectively.

SAM GM Audio Video Multi
✘ ✘ 45.83% 63.17% 64.52%
✔ ✘ 58.60% 64.79% 73.42%
✘ ✔ 60.13% 65.06% 80.26%
✔ ✔ 61.16% 67.82% 81.05%

Table 2: Ablation study on CREMA-D dataset.

reported in Table 2, where “SAM”/“GM” denotes whether
the SAM objective/gradient modification strategy is applied
during training, respectively. And “Audio”, “Video”, and
“Multi” denote that the results based on audio, video, and
multiple modalities, respectively. From Table 2, we can find
that both gradient modification strategy and SAM loss can
boost the performance in MML.

Necessity of Interactive Enhancement
We carry out an experiment on CREMA-D dataset to further
analyze the necessity of interactive enhancement. The algo-
rithm of IGM designs an interactive learning strategy by us-
ing the gradient modification matrix of one modality to mod-
ify the gradient of another modality. To verify the effective-
ness of this strategy, we design a unidirectional gradient mod-
ification experiment for comparison. Specifically, we only
use the model of audio modality to modify the gradient of
video modality, which is denoted as “w/o v-GM”. The nota-
tion “w/o a-GM” is defined similarly. We report the results in
Table 3. In Table 3, we report the accuracy after initialization
in the column of “Initial”. The other columns represent the
accuracy calculated after completing the learning of a certain
mode at different iterations. For w/o v-GM and w/o a-GM,
the accuracy in the initial stage, the stage without applying
GM strategy, and the stage with the same GM strategy is the
same as IGM, which is underlined in Table 3.

From Table 3, we can observe that: (1). The performance

Method Initial Out Iters=1 Out Iters=2
Audio Video Audio Video

w/o a-GM .0325 .5312 .6803 .7231 .7482
w/o v-GM .0325 .5312 .7023 .7472 .7646

IGM .0325 .5312 .7023 .7557 .8105

Table 3: Interactive enhancement analysis.

Scope of GM Accuracy MAP
100% 75.34% 81.23%
50% 78.97% 85.58%
30% 82.97% 90.15%
1.3% (Classification head) 81.05% 89.48%
0% (w/o GM) 73.42% 81.77%

Table 4: Results with different scope of GM.

of IGM is better than that of the unidirectional gradient mod-
ification, i.e., “w/o v-GM” and “w/o a-GM”. (2). Compared
with the “w/o a-GM”, “w/o v-GM” can achieve better per-
formance. In other words, the method that uses the model of
the dominant modality (audio) to modify the gradient of the
non-dominant modality (video) is superior to the method that
uses the model of the non-dominant modality to modify the
gradient of the dominant modality.

4.5 Sensitivity to Hyper-Parameters
Hyper-Parameter τ and ρ: We study the influence of hyper-
parameter τ and ρ on CREMA-D dataset. We present the
accuracy and MAP values with different τ ∈ [10−3, 100] and
ρ ∈ [10−15, 10−4]. The results are shown in Figure 3. From
Figure 3, we can see that IGM is not sensitive to scaling factor
τ and hyper-parameter ρ in a large range.
The Scope of Gradient Modification: In this section, we
study the influence of the scope of the gradient modification.



10
3

0.4 1.3 20 10
0

0.50

0.60

0.70

0.80

0.90

Accuracy
MAP

(a). Scaling factor τ .
10
15

10
10

10
8

10
6

10
40.50

0.60

0.70

0.80

0.90

Accuracy
MAP

(b). Hyper-parameter ρ.

Figure 3: Sensitivity to τ and ρ.
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Figure 4: Loss landscape visualization.

We carry out this experiment on CREMA-D dataset, where
the network architectures of audio and video modalities are
the same, i.e., a ResNet18 as encoder and three full-connected
layers as classification head. We select parameters along the
deep to shallow layers of the neural network. And we define
the scope of gradient modification as the proportion of the se-
lected network parameters to the total parameters. The results
are shown in Table 4, where “0% (w/o GM)” is used as the
baseline and means that we don’t perform gradient modifica-
tion strategy during training. We can see that the best per-
formance is achieved when we choose 30% parameters for
gradient modification. In contrast, choosing all parameters
for gradient modification does not achieve the best perfor-
mance. We argue that the essence of this phenomenon is that
the shallow neural network focuses on the learning of visual
feature patterns, and it is not suitable for too much perturba-
tion, especially for heterogeneous data. Furthermore, we can
also find that the performance of the method applying gradi-
ent modification is better than that of the method which does
not apply gradient modification.

4.6 Further Analysis
Loss Landscape Visualization: To illustrate the impact
of SAM optimization, we utilize the DNN visualization
method [Li et al., 2018] to plot 2D loss function of MLA
and IGM on CREMA-D dataset. The results of the loss land-
scape are shown in Figure 4. We can find that the loss change
of IGM is smaller than that of MLA. That is to say, the loss
landscape of our proposed method is flatter than that of MLA.
Magnitude of Singular Values: According to Equation (3),

50 100

D
IM

×
2
5
6

2
5
6
×
6
4

6
4
×
c

(a). Singular values.

IGM

IGM w/o SAM

0.5 0.6 0.7 0.8

M
u
lt
i

T
ex
t

Im
a
g
e

(b). Pretrained Model.

CLIP

CLIP+MLA

CLIP+IGM

200 400 6000
.2

0
.4

0
.6

0
.8

(c). Training time.

A
cc
u
ra
cy Baseline

MLA

AGM

ReconBoost

SMV

PMR

IGM

Figure 5: Analysis for singular values, robustness of the pretrained
model, and training time.

the magnitude of singular values reflects the loss flatness of
the direction indicated by corresponding singular vectors. We
report the singular values of different layers for the IGM and
the method which does not adopt SAM loss (denoted as
“IGM w/o SAM”). The average singular values for different lay-
ers on CREMA-D dataset are shown in Figure 5 (a). From
Figure 5 (a), we can find that the singular values of IGM are
smaller than that of the IGM w/o SAM in most cases. In other
words, the loss landscape of IGM is flatter than that of the
method without SAM loss.
Robustness of the Pretrained Model: We further ex-
plore the robustness of the large vision-language pre-trained
model on Twitter2015 dataset. Following the setting of
MLA [Zhang et al., 2024], we replace the backbones of
image and text modalities as the corresponding encoders of
CLIP [Radford et al., 2021]. We adopt the same three-layer
network as the classification head for multimodal learning.
Then we fine-tune the model on Twitter2015 dataset. We re-
port accuracy results in Figure 5 (b), where “CLIP+MLA”
and “CLIP+IGM” denote that during fine-tuning we apply
MLA and IGM, respectively. From Figure 5 (b), we can find
that: (1). MLA and IGM can achieve better performance
compared with CLIP. (2). IGM can boost higher improve-
ment based on CLIP encoder compared with MLA.
Training Overhead: We compare the training overhead
of IGM with competitive state-of-the-art baselines, includ-
ing Baseline, AGM, PMR, MLA, and ReconBoost, through
empirical experiments under the same setting on CREMA-
D dataset. The results are shown in Figure 5 (c), where the
training times are reported in hours. It can be observed that
IGM achieves the best accuracy while maintaining competi-
tive training time.

5 Conclusion
In this paper, we propose a novel MML method, called inter-
active MML via flat gradient modification (IGM). We first
employ a flat projection-based gradient modification strat-
egy to enhance the interaction during learning and avoid poor
plasticity issue. Furthermore, we introduce SAM-based op-
timization to fully exploit the flatness of the learning ob-
jective, further smoothing the learning objective. To this
end, IGM can further mitigate the modality imbalance prob-
lem and lead to better performance. Extensive experiments
demonstrate the superiority of IGM compared with various
SOTA methods across five widely used datasets.
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